Methodology for Autodock 4 (Using Defaults)

When Functional Site of Receptor in Known

- Start →All Programs→MGL Tools→Autodock1.5→Enter (It opens ADT window)
- PMV Molecules → Right Click
 It opens Open Widget for Macromolecule
- 3. Select Macromolecule → Open

Preparing Macromolecule First

- 1. Edit \rightarrow Hydrogen's \rightarrow Add \rightarrow Select radio button of All Hydrogen's \rightarrow OK
- 2. File \rightarrow Save \rightarrow Write PDB \rightarrow Select macromolecule \rightarrow OK \rightarrow Overwrite \rightarrow Yes

Preparing Ligand Molecule Second

- Ligand → Input → Open → (Open Ligand Widget opens) → Change to All Files from PDBQT → Select Ligand File to open → Open → OK
- 2. Ligand \rightarrow Torsion Tree \rightarrow Detect Root
- 3. Ligand \rightarrow Torsion Tree \rightarrow Choose Torsion \rightarrow Done
- 4. Ligand \rightarrow Torsion Tree \rightarrow Set No of Torsions \rightarrow set value \rightarrow Dismiss
- 5. Ligand \rightarrow Output \rightarrow Save As PDBQT \rightarrow Provide file name with (dot)PDBQT extension
- 6. Ligand → Torsion Tree→ Show/Hide Root Markers

Preparing Flexible Residue File Third

- 1. Flexible Residues \rightarrow Input \rightarrow Choose Macromolecule \rightarrow Select Macromolecule \rightarrow OK
- 2. Select → Select From String → Selection Menu Opens → Clear Form → Type Residue Name in Residue Name Field; that has to be consider as flexible residue during docking calculation → Add → Dismiss
- 3. Flexible Residues \rightarrow Choose Torsions in Currently Selected Residue/s \rightarrow Close
- 4. Flexible Residues \rightarrow Output \rightarrow Save Flexible PDBQT \rightarrow add (_flex.pdbqt) with saving file name \rightarrow Save
- 5. Flexible Residues \rightarrow Output \rightarrow Save Rigid PDBQT \rightarrow add (_rigid.pdbqt) with saving file name \rightarrow Save
- 6. Edit \rightarrow Delete Macromolecule \rightarrow Select Macromolecule \rightarrow Delete Molecule \rightarrow Dismiss

Preparing Grid Maps Fourth

- 1. Grid \rightarrow Macromolecule \rightarrow Open \rightarrow select macromolecule_rigid.pdbqt \rightarrow Open \rightarrow if warn click on Yes \rightarrow OK
- 2. Grid \rightarrow Set Map Types \rightarrow Choose Ligand \rightarrow select ligand molecule \rightarrow Accept \rightarrow OK
- 3. Grid \rightarrow Grid Box \rightarrow set grid center point \rightarrow Close Saving Current
- 4. Grid \rightarrow Output \rightarrow Save GPF \rightarrow save file with (dot)gpf \rightarrow Save

Execution of Gridding for Grid Log Generation Fifth

- (For Windows Operation)Start → All Programs → Cygwin → Cygwin Bash Shell → Cygwin Bash Shell Command Line Opens
- Change to your current home directory on command line → (Is) check for the files you have prepared by using MGL Tools → Make sure you have PDBQT file of ligand, Rigid residue file and Flexible residue file of Macromolecule and Ligand(dot)gpf
- 3. Now execute the Grid by typing the following command in command line Autogrid4(space)-p(space)Ligand(dot)gpf(space)-l(space)Ligand(dot)glg
- 4. Now wait and Do Not Close the command line window untill the execution display the message of Successful Completion
- 5. Time taken for execution will depends on systems configuration and Macromolecule-Ligand complex complexity.
- 6. After completion Check for (dot)glg file in your current Home directory
- 7. (For Linux Operation) Use Linux Command Line Window instead Cygwin Bash Shell and the rest will remain same.

Preparing Docking Parameter File Sixth

- 1. Docking \rightarrow Macromolecule \rightarrow Set Rigid ResidueFile Name \rightarrow select macromolecule_rigid.pdbqt \rightarrow Open
- 2. Docking \rightarrow Ligand \rightarrow Choose \rightarrow select ligand file \rightarrow Select Ligand \rightarrow Accept
- Docking → Macromolecule → Set Flexible Residue File Name → select macromolecule_flex.pdbqt → Open
- 4. Docking \rightarrow Search Parameters \rightarrow Genetic Algorithm \rightarrow Accept
- 5. Docking \rightarrow Docking Parameters \rightarrow Accept
- 6. Docking \rightarrow Output \rightarrow Lamarckian GALS \rightarrow save file with (dot)dpf \rightarrow Save

Execution of Docking for Docking Log Generation Seventh

- (For Windows Operation)Start → All Programs → Cygwin → Cygwin Bash Shell → Cygwin Bash Shell Command Line Opens
- 2. Change to your current home directory on command line \rightarrow (ls) check for the files you have prepared by using MGL Tools \rightarrow Make sure you have Ligand(dot)dpf
- Now execute the Dock by typing the following command in command line Autodock4(space)-p(space)Ligand(dot)dpf(space)-l(space)Ligand(dot)dlg
- 4. Now wait and Do Not Close the command line window untill the execution display the message of Successful Completion
- 5. Time taken for execution will depends on systems configuration and Macromolecule-Ligand complex complexity.
- 6. After completion Check for (dot)dlg file in your current Home directory
- 7. (For Linux Operation) Use Linux Command Line Window instead Cygwin Bash Shell and the rest will remain same.