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We present an approach for testing for the existence of continuous generators of discrete stochastic transition
matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the
assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is
presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are
then implemented computationally and applied to numerical data. A discussion concerning the bridging between
rigorous mathematical results on the existence of generators to its computational implementation is presented.
Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and
for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem
analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible
applications of our framework to problems in different fields is briefly addressed.
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I. MOTIVATION

While models describing the evolution of a set of vari-
ables are typically continuous, observations and experiments
retrieve discrete sets of values. Therefore, to bridge between
models and reality one has to know if it is reasonable to
assume a continuous “reality” underlying the discrete set
of measurements. When the evolution has a non-negligible
stochastic contribution, one typically extracts from the set of
measurements the distribution �P (t) of the observed values
of the process X at a time t , that is, Pj (t) = P(X(t) = j ). By
observing the process again at a future time t + τ and counting
the number of observed transitions between states, one is able
to define a transition matrix T(t,τ ) that satisfies:

�P (t + τ ) = �P (t)T(t,τ ), (1)

or, in components, Pk(t + τ ) = ∑
j Pj (t)Tjk . The transition

matrix T(t,τ ) has all its elements Tjk in the interval [0,1],
has row-sums 1,

∑
k Tjk = 1, and has non-negative entries,

Tjk � 0.
In this paper we address the problem of determining

whether the evolution of an observed system is governed by
a time-continuous Markov master equation. This problem is
usually called the embedding problem [1]. Time-continuous
Markov processes are, by definition, memoryless stochastic
processes: The probability of transition between states at any
time does not depend on the history of the process. If the
stochastic process is time continuous and Markovian, then the
transition matrix can be defined for infinitely small τ , obeying
an equation of the form

dT(t,τ )

dτ
= Q(t)T(t,τ ), (2)
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where Q(t) is called the generator matrix of the process, having
zero row-sums and non-negative off-diagonal entries. Notice
that the solution T(t,τ ) of this equation is indeed a transition
matrix for all t and τ , i.e., with non-negative real elements and
unity row-sums, if and only if it obeys Eq. (2) for some Q(t)[1].

The transition matrix T (t,τ ), solution of Eq. (2), defines the
evolution equation, Eq. (1), of the probability density function.
Thus, the entries Qkj of the generator matrix represent the
transition rate between states j and k at time t . Time continuity
is a property that results from the fact that all entries of Q, i.e.,
all transition rates, are finite, under the overall assumption
that the state space if finite. The general solution of Eq. (2)
yields the relation between the empirical transition matrix and
the “continuous” generator which, in the particular case of a
time-homogeneous transition matrix, has the form

T(t,τ ) ≡ T(τ ) = exp (Qτ ), (3)

for all times t . In general, the embedding problem reduces to
the problem of being able to write the transition matrix T(t,τ )
as solution of Eq. (2) and typically one considers the particular
case of a time-homogeneous solution, Eq. (3).

While time homogeneity is a useful common assumption, it
is in several cases too restrictive. Assuming time homogeneity
has the advantage of knowing all future evolution of a
time-homogeneous Markov process from the law of the change
of system’s configuration in two distinct instants [see Eq. (3)],
one is not able to address simultaneously more realistic cases
of nonstationary systems. Some progress in this topic has
been made recently, for example, Shintani and Shinomoto
have examined an optimized Bayesian rate estimator in cases
where the probability density function is not constant in
time [2].

In this scope, there are three main reasons for considering
an empirical transition matrix to not be time-homogeneous
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embeddable. The first one is when the underlying process is
not Markovian. We previously addressed such a scenario [3,4].
One second reason is the statistical error any empirical data set
is subjected to. Typically, one defines for these cases an interval
of confidence (a distance) beyond which embeddability is
rejected. The third reason is, of course, that the underlying
process is itself not time homogeneous. In this case, there is
no time-homogeneous generator, but there is sill the chance
that an inhomogeneous generator exists.

In this paper, we address analytically and numerically the
case of time-inhomogeneous generators and test their imple-
mentation in one framework to address synthetic numerical
data, dealing with statistical error of transition matrices. We
will also review the time-homogeneous embedding problem,
introduced in 1937 by Elfving [5], providing an analytical
example in three dimensions. Since our aim is to provide
a framework for applying to empirical data from which
transition matrices can be extracted and tested, we will always
consider conditions under the assumption that one has a finite
state space, i.e., transition matrices have dimension n × n, with
n an arbitrary positive integer.

We start in Sec. II by describing the standard time-
homogeneous problem with the main mathematical theorems
that give the necessary and sufficient conditions for a generator
matrix to exist. In Sec. III we illustrate this standard time-
homogeneous embedding problem by applying the results to
the specific case of a circulant transition matrix. Sections IV
and V are the heart of this paper; the former establishes the
main mathematical theorems that are still valid for the general
case of inhomogeneous generators and the latter describes
their implementation in a framework that is then tested with
synthetic data. Finally, discussions and conclusions are given
in Sec. VI.

II. THE HOMOGENEOUS EMBEDDING PROBLEM

The question of knowing if a time-homogeneous generator
Q [see Eq. (3)] exists is known as homogeneous embedding
problem [5] and, from a mathematical point of view, is
currently an open problem for matrices with dimension
n � 3. The problem in dimension 2 was solved in 1962
by Kingman [6], who proved that, for n = 2, a matrix
is embeddable if and only if its determinant is positive.
More recently, developments in three dimensions have been
made with the study of matrices with repeated negative
eigenvalues [7].

Part of the difficulty when addressing the embedding
problem arises from the fact that the logarithm of a matrix
is, in general, not unique. This is crucial when deriving a
generator Q, by inverting Eq. (3). Indeed, the logarithm of a
matrix has counterintuitive properties, namely:

(i) The product of two embeddable transition matrices T1

and T2 is also a transition matrix not necessarily embeddable.
(ii) Having two transition embeddable matrices with gen-

erators Q1 and Q2, if their product is embeddable, then its
generator is not necessarily Q1 + Q2, unless the transition
matrices commute.

(iii) It is possible that the product of two matrices, T1T2,
is embeddable, but the product T2T1 is not.

Since the logarithm of a matrix is not unique, one defines
the so-called principal logarithm of one matrix T as [8]

log T = 1

2πi

∫
γ

log z(zI − T)−1dz, (4)

where γ is a path in the complex plane which does not intersect
the negative real semiaxis and encloses all eigenvalues of
T. Computationally, one uses the Taylor expansion of the
logarithmic function, yielding

log T =
∞∑

n=1

(−1)n+1 (T − I)n

n
, (5)

which is the the principal branch of the complex logarithm
in Eq. (4) or other numerical methods, such as Schur
decomposition.

To ascertain if the principal logarithm is computable one
has the following proposition [9]:

Proposition II.1. Let S = maxλ∈spec(T) |λ − 1| be the max-
imum distance from unity of eigenvalues λ in the spectrum of
the transition matrix T. If S < 1, then the polynomial series of
the log T, Eq. (5), converges to a matrix with zero row-sums.

While the existence of the logarithm of a transition matrix is
necessary for our purposes, it does not solve the full embedding
problem. One must assure further that a valid generator exists,
i.e., a matrix with non-negative off-diagonal entries and zero
row-sums. Moreover, it is also true that if S > 1, then one
cannot claim that T has no generator: Another generator may
exist in a different branch.

We are interested in the general case of knowing if there
is a valid generator, and, if there is, to find it. For that, we
need to solve the full embedding problem. The full embedding
problem comprises a set of propositions which are separated
in four different categories:

(A) Conditions for the convergence of the principal loga-
rithm, as presented above in Proposition II.1, that determine if
the matrix defined in Eq. (5) has finite entries Qkj .

(B) Necessary conditions for the existence of a generator.
(C) Sufficient conditions for the existence of a generator.
(D) Uniqueness conditions of the generator for properly

defining the underlying continuous process.
The conditions for the convergence of the principal log-

arithm are mainly included in Proposition II.1. Most of the
other known results, comprising categories (B), (C), and (D),
are enumerated in the papers by Israel and coworkers [9] and
Davies [8]. In the following we present an overview of the
most relevant propositions.

Regarding the necessary conditions, important for estab-
lishing that a generator cannot exist, there are three highly
used propositions that are easy to implement [9]. The first one
is:

Proposition II.2. If a transition matrix T obeys one of the
following conditions:

(a) Det (T) � 0,
(b) Det (T) >

∏
i Tii ,

(c) Tij = 0 and there is an integer n such that (Tn)ij �= 0,
then no valid generator exists.
For Q = log (T), the equality

Tr (Q) = log [Det (T)] (6)
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gives the right insight to the property (a) in Proposition II.2
since the logarithm of a real number is defined only for
positive values. Property (b) is related with the definition of
determinant. As for property (c), suppose that a minimum of
m transitions are needed to go from i to j . If the processes
is not time continuous and transitions do not occur more than
once in a time period �t , then an entity can only go from
i to j in a number of transitions larger than (m − 1)/�t .
This naturally is not true for time-continuous processes, since
there is always a nonzero probability of making m transitions
between different states over any time window. For a complete
proof of Proposition II.2, see Ref. [9].

The second proposition is as follows:
Proposition II.3. For a transition matrix T with distinct

eigenvalues, a generator Q exists only if, given any eigenvalue
of Q in the form λ = a + ib, it satisfies the condition |b| �
| log(Det T)|.

Proposition II.3 is related to the previous one. Consider
T embeddable and define k ≡ Tr (Q) = log[Det (T)] [see
Eq. (6)]. All entries of matrix Q′ = Q − Ik are non-negative
and its row-sums are equal to −k. From the Perron-Frobenius
theorem we know that all eigenvalues of matrix Q′ have an
absolute value not smaller than −k. Since λ = a + ib is an
eigenvalue of Q, then λ′ = (a − k) + ib is an eigenvalue of
Q′, yielding −k > |λ′| > |b|.

A third necessary condition defines the region of the
complex plane that contains the eigenvalues of T, if a generator
exists:

Proposition II.4. If T is a n × n matrix and has a generator,
then its eigenvalue spectrum is given by λk = rk exp (iθk),
where −π � θ � π and

r � exp

[
− θ tan

(
π

n

)]
. (7)

The proof of this proposition, and a general description of
the inverse eigenvalue problem, can be found in Refs. [10,11].
It is related with the inverse eigenvalue problem and can also
be used when studying the existence of stochastic roots of
matrices.

One additional necessary condition for time-homogeneous
generators that will be useful below when comparing with
time-inhomogeneous generators is the following one:

Proposition II.5. If T is embeddable, then every negative
eigenvalue of T has even algebraic multiplicity.

In general, Proposition II.5 is useful for the cases when T
has negative real eigenvalues.

Sufficient conditions for the existence of a generator usually
deal with considering different branches of the logarithm of
the transition matrix and checking if they are valid generators,
i.e., if their off-diagonal entries are real and positive and their
row-sums are zero. In the particular case when it is known
that the only possible generator is the principal logarithm,
then computing Eq. (5) gives a complete answer to whether
a valid generator exists. If necessary conditions hold, then it
is legitimate to raise the hypothesis a generator may exist, but
there is still the question regarding whether the generator is
unique.

The following two propositions are sufficient conditions for
the uniqueness of one homogeneous generator [9]. The first
one reads:

Proposition II.6. Let T ∈ Rn×n be a transition matrix.
(a) If Det (T) > 1

2 , then T has at most one generator.
(b) If Det (T) > 1

2 and ||T − I|| < 1
2 using any operator

norm, then log(T) is the only possible generator of T.
(c) If T has distinct eigenvalues, and Det (T) > exp (−π ),

then log(T) is the only possible generator of T.
The second property (b) guarantees that, when there are no

repeated eigenvalues, only a finite number of generators exist.
Such property is particularly relevant, since in this case it is
often possible to find all generators [9].

The second proposition for the uniqueness of one generator
is as follows:

Proposition II.7. If T is a Markov matrix with distinct
eigenvalues λ1, . . . ,λn, then we have that

(a) Only a finite number of solution eQ = T can be Markov
generators.

(b) If |λr | > exp [−π tan (π
n

)] for all r , then the principal
logarithm is the only Q such that exp (Q) = T.

The proof of both Propositions II.6 and II.7 can be found
in Ref. [9].

III. A EXAMPLE: THE CIRCULANT TRANSITION
MATRIX

As a mathematical problem, the embedding problem is
still open for a general n-dimensional matrix, but it can
be analytically solved for some subclasses of matrices. In
this section we address in detail a simple example in three
dimensions, namely the embedding of circulant transition
matrices of the form:

TC =
⎛
⎝a b c

c a b

b c a

⎞
⎠, (8)

or simply TC = circ(a,b,c), with 0 � a,b,c � 1 and a + b +
c = 1. Circulant transition matrices have two independent
degrees of freedom: Any pair of values (a,b) can represent
a three-dimensional circulant transition matrices if a + b < 1,
a,b > 0. See the triangular delimited region in Fig. 1.

It is easy to check that all necessary conditions in Propo-
sition II.2 for a generator to exist are fulfilled if 0 < a3 +
b3 + c3 − 3abc � a3. Further, according to Proposition II.3,
a generator may exist if the argument of the eigenvalues of TC

are not larger than log (a3 + b3 + c3 − 3abc).
For the particular case of the circulant transition matrix,

only Proposition II.4 matters, since in this case it turns out to
be a necessary and sufficient condition as we next prove.

To that end, we write the transition matrix as TC = exp QC ,
since the exponential of a circulant matrix with real entries is
itself a circulant matrix with real entries and consider QC in
the form QC = circ(−α,β,γ ). For QC to be a generator we
need to prove that α,β,γ > 0.

The row-sums of TC are equal to 1 by definition and this
can only happen if the row-sums of QC are equal to zero.
Thus, the equality α = β + γ . Moreover, it can be shown that,
computing the principal logarithm of TC , yields a matrix with
negative diagonal elements. Thus we take α > 0.

Since α > 0 and all entries of the generator Q are real, we
need only to prove that β and γ are both non-negative. Since
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(a)

(b)

(c)

c

b

FIG. 1. (a) Region in parameter space of transition matrix TC ,
Eq. (8), for which a generator QC exists. The triangular region (line)
is the one for which matrix TC is a transition matrix, a,b,c > 0 and
a + b + c = 1. The dark gray (blue) region indicates the region of
parameter values for which only one generator exists, while the light
gray (yellow) region indicates a region where two generators exist. (b)
Zooming into this region shows a region where three generators exist
(dark gray), and (c) continuing to zoom shows smaller and smaller
regions, where a larger number of generators exist (see text).

α = β + γ , either β or γ must be positive. Therefore we only
need to prove that βγ > 0.

Proposition II.4 gives a condition for the eigenvalues of
the transition matrix TC to have a generator matrix. It can
be proven [12] that such a condition holds if and only if an
equivalent condition for QC holds, namely:∣∣∣∣ Im(λi)

Re(λi)

∣∣∣∣ < tan

(
π

3

)
, (9)

where λi with i = 1,2,3 are the eigenvalues of QC [13]:

λ1 = 0, (10a)

λ2 = −β − γ + βk + γ k∗, (10b)

λ3 = −β − γ + βk∗ + γ k = λ∗
2, (10c)

with k = e
2πi

3 and k∗ its complex conjugate.
Using λ2 in Eq. (10b) and substituting in Eq. (9) yields∣∣∣∣λ2 − λ∗

2

λ2 + λ∗
2

∣∣∣∣ < tan

(
π

3

)
(11)

and through algebraic manipulation one arrives at∣∣∣∣β − γ

β + γ

∣∣∣∣ < 1. (12)

The last inequality implies necessarily that βγ > 0. A similar
result is obtained by substituting in Eq. (9) one of the other
eigenvalues λ0 and λ2.

Hence, in our particular case of a circulant matrix, Propo-
sition II.4 is also a sufficient condition and one needs only to
determine the inequality in Eq. (7) as a function of the degrees
of freedom in matrix TC for all its three eigenvalues

λ
(T )
1 = 1, (13a)

λ
(T )
2 = 1

2
(2 − 3b − 3c) +

√
3

2
(b − c)i, (13b)

λ
(T )
3 = 1

2
(2 − 3b − 3c) −

√
3

2
(b − c)i. (13c)

The first eigenvalue is independent of the parameters. The
other two are complex conjugate, having the same norm r

and symmetric arguments θ . Thus, we only need to consider
one eigenvalue, say, λ

(T )
3 = r exp (iθ ), which, according to

Proposition II.4, for TC to be embeddable, must fulfill r �
exp (−√

3θ ) with

r = 1
2 {[2 − 3(b + c)]2 + 3(b − c)2}1/2 (14)

and

θ =

⎧⎪⎨
⎪⎩

arctan θ̃ ⇐ c < 2
3 − b,

arctan θ̃ + sgn (b − c)π ⇐ c > 2
3 − b,

π
2 sgn (b − c) ⇐ c = 2

3 − b,

(15)

where θ̃ = √
3(b − c)/(2 − 3b − 3c).

Figure 1 shows the region within the triangle 1 − b − c > 0,
b > 0, and c > 0 where the circulant transition matrix TC

has a generator, i.e., the region where a = 1 − b − c and
b and c obey the inequality in Eqs. (7), (14), and (15).
The number of valid generators of TC , a three-dimensional
circulant transition matrix, can also be determined from its
eigenvalues; namely it is given by the largest integer smaller
than {√3 log [Re2(λ(T )) + Im2(λ(T ))]}/(4π ).

Figure 1(a) shows one dark gray (blue) region and one
smaller light gray (yellow) region. While the dark gray (blue)
region indicates the set of parameter values for b and c for
which only one generator exists, the light gray (yellow) region
comprehends the set of parameter values for which TC has two
or more generators. By zooming in this region, smaller and
smaller regions appear, Figs. 1(b) and 1(c), near the crossing
point between the diagonal c = b and the line c = 2

3 − b,
where a larger number of generators exist.

IV. THE TIME-INHOMOGENEOUS EMBEDDING
PROBLEM

In this section we show which of the known theorems
for time-homogeneous embedding problem hold when both
transition matrix and its generator depend explicitly on time.
In this scope, we provide three new conditions, two necessary
and one sufficient, for the existence of a time-inhomogeneous
generator. We also provide two additional necessary and
sufficient conditions which enable the possibility for testing
equivalent matrices.
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There are several differences between the time-
homogeneous and the time-inhomogeneous problem:

(i) In the time-inhomogeneous problem there is no finite
set of possible generators, as is usually the case in the time-
homogeneous counterpart, namely when the transition matrix
has no repeated eigenvalues [9]. If there is a nonhomogeneous
generator, then there is an infinite number of them.

(ii) The product of two homogeneous embeddable matri-
ces might not be time-homogeneous embeddable, whereas
the product of two time-inhomogeneous matrices is always
embeddable.

(iii) In the inhomogeneous case, the existence of a real-
valued logarithm is not a necessary condition for being
embeddable.

(iv) The necessary conditions of the time-homogeneous
problem concerning the eigenvalues of the transition matrix,
Propositions II.4 and II.5, are not necessary conditions for the
time-inhomogeneous problem.

The generator Q(t) is now considered to explicitly depend
on time t , as well as its corresponding transition matrix T(t,τ ).
As stated in the Introduction, a transition matrix is solution
of Eq. (2), i.e., it has a generator if and only if it describes
a time-continuous and Markov process, besides having the
properties of a transition matrix (non-negative entries and
unitary row-sums).

For time-inhomogeneity, the general solution of Eq. (2) is
given by:

T(t,τ ) =
∞∑

k=0

Zk(t − τ ), (16)

with Z0(t − τ ) ≡ Z0 = I and

Zk+1(t − τ ) =
∫ t

t−τ

Zk(s)Q(s)ds. (17)

Equation (17) is known as the Peano-Baker series [14]. In the
particular case that Q(t) and Q(t ′) commute for all t and t ′
solution (16) reads

T(t,τ ) = exp

[∫ t

t−τ

Q(s)ds

]
. (18)

The first necessary proposition for time-inhomogeneous
generators follows simply from the fact that T(t,τ ) is a
transition matrix:

Proposition IV.1. If a transition matrix T(t,τ ) has a nega-
tive determinant, then no generator Q(s) exists, for t < s <

t + τ .
Proof. To prove the positiveness of the determinant we

start by assuming that a generator Q(t) exists. Then, letting
the arguments of T and Q drop for simplicity, it follows that

d

dt
Det T = Det T Tr

(
T−1 dT

dt

)
, (19a)

d log(Det T)

dt
= Tr (T−1QT), (19b)

d log(Det T)

dt
= Tr (QTT−1), (19c)

Det T = exp

(∫ t

t−τ

Tr Qds

)
> 0. (19d)

The final inequality stands true since the trace of Q(t) is
always a real (negative) value. �

The second necessary proposition deals also with the fact
that T is a transition matrix, namely that its entries are
probabilities:

Proposition IV.2. If a transition matrix T fulfills Det T >∏
i Tii , then no generator exists.
Proof. If T has a generator, then

dTkk(t,τ )

dt
=
∑

j

Qkj (t)Tjk(t,τ ), (20)

and, since for k �= j , Tkj > 0, and Qkj � 0, one arrives at

dTkk(t,τ )

dt
� Qkk(t)Tkk(t,τ ). (21)

Since Tkk(t,0) = 1, we can integrate the differential equation
in Eq. (20), yielding

Tkk(t,τ ) � exp

(∫ t

t−τ

Qkk(s)ds

)
, (22)

where Grönwall’s inequality is used [15], and, finally, from
Eq. (19d), one arrives at

∏
k

Tkk(t,τ ) �
∏
k

exp

(∫ t

t−τ

Qkk(s)ds

)

= exp

(∑
k

∫ t

t−τ

Qkk(s)ds

)

= exp

(∫ t

t−τ

Tr (Qkk(s))ds

)
= Det [T(t,τ )]. (23)

�
The sufficient condition we will implement afterwards deals

with the particular case of a Lower-Upper (LU) decomposition:
Proposition IV.3. If T has a LU decomposition with L

and U having only non-negative elements, then T has an
inhomogeneous generator Q(t).

Proof. To prove this proposition, it is important to know an
auxiliary result, Proposition A.1 in Appendix, from which it
follows that the property of having a time-dependent generator
is preserved under multiplication. We use this results from
proving that a matrix having an LU decomposition, with L
and U with non-negative entries, can be modeled through a
time-dependent generator. For that, it suffices to prove that the
matrix T has an LU decomposition with L and U transition
matrices.

Let us first define a diagonal matrix D with entries Dii =
(
∑

j Uij )−1. Thus, T, with dimension n × n, can be written
as T = LU = LD−1DU = L′U′, with L′ = LD−1 and U′ =
DU triangular matrices that have all non-negative elements
since they are a multiplication of one diagonal matrix with
one triangular matrix, all of them with non-negative elements.
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Furthermore their row-sums are one, since

∑
j

U ′
ij =

∑
j

∑
k

DikUkj =
∑

k

Dik

⎛
⎝∑

j

Ukj

⎞
⎠

= Dii

⎛
⎝∑

j

Uij

⎞
⎠ =

(∑
k

Uik

)−1
⎛
⎝∑

j

Ukj

⎞
⎠ = 1,

(24)

for all i. Analogously, since
∑

j Tij = 1 for i, one has

∑
j

Tij =
∑

j

∑
k

L′
ikU

′
kj =

∑
k

L′
ik

⎛
⎝∑

j

U ′
kj

⎞
⎠

=
∑

k

L′
ik = 1 (25)

and therefore ∑
k

L′
ik = 1, (26)

where 1 is a column vector with all entries 1. �
Notice that in the LU factorization there are usually n2 + n

variables and n2 equations. By imposing the row-sums equal
to 1, we get n2 + n equations, and, consequently, the LU
decomposition defined in this way is unique.

As an illustrative example consider the matrix:

TE =
⎡
⎣0.1179 0.0890 0.7931

0.0100 0.1000 0.8900
0.8901 0.0010 0.1089

⎤
⎦. (27)

The matrix TE is, according to Proposition IV.3, time-
inhomogeneous embeddable, since it is a product of matrices
that have a positive LU decomposition. However, it is not
time-homogeneous embeddable, since it has distinct negative
eigenvalues, {1,−0,001490,−0,671710}, and thus it has no
real-valued logarithm [16]. Moreover, the conditions in both
Propositions II.4 and II.5 are not fulfilled.

Regarding Proposition II.2, we have shown that conditions
(a) and (b) are necessary conditions for the more general case
of time-inhomogeneous generators. As for condition (c), one
can show that there is also a limit number of zero entries for the
time-inhomogeneous case. See Proposition A.2 in Appendix.

To end this section we introduce two additional propo-
sitions, which are necessary and sufficient for both time-
homogeneous and -inhomogeneous cases. They are useful
when implementing the computational framework for de-
tecting generators, since they help to handle cases where
the application of the above propositions do not provide
satisfactory output for the embedding problem. With these
equivalent matrices one aims to derive a class of matrices that
are embeddable if and only if the “original” transition matrix
T is embeddable, which expands the set of possible matrices
one may properly test.

The first proposition uses the similarity of matrices through
permutation matrices:

Proposition IV.4. Let A = P�TP, where P is a permutation
matrix and T is a transition matrix. T is embeddable if and only
if A is also embeddable.

Proof. To prove this proposition, we will consider a
relabeling of the states i, j , and so on. Notice that, under
such relabeling, the properties of the transition matrix do not
change. Therefore, since changing the transition matrix T by
P�TP one is, in fact, just relabeling the states, one intuitively
concludes that if T is embeddable, then P�TP should also be
embeddable.

We start by assuming that T is embeddable,

T = exp (Q) =
∑ Qn

n!
, (28)

where Q is the generator of T. Since eP�QP = P�eQP =
P�TP, we only need to prove that Q′ = P�QP is a valid
generator, i.e., it must have zero row-sums and non-negative
off-diagonal entries.

Since Q is a valid generator one has∑
j

Q′
ij =

∑
j

∑
k

∑
l

P �
il QlkPkj

=
∑

k

∑
l

P �
il Qlk

⎛
⎝∑

j

P kj

⎞
⎠

=
∑

k

∑
l

P �
il Qlk

=
∑

l

P �
il

∑
k

Qlk

=
∑

l

P �
il × 0 = 0. (29)

To prove that matrix Q′ has non-negative off-diagonal
entries we write for k �= l the off-diagonal entry Q′

kl =∑
nm PknQnm(P �)ml and note that, since the matrix P has only

one nonzero element per column and per row. Thus, being that
column i and row j , one has Q′

kl = PkiQij (P �)j l .
If k �= l and i = j , then Pki = 1 and (P �)il = Pli = 1

which contradicts the fact that P is a permutation matrix. Thus,
if k �= l then i �= j , and so there is a direct correspondence
between off-diagonal elements of Q′ and those of Q: If all Qij

are non-negative so are all Q′
kl .

Conversely, if A is embedabble, one just writes T =
(P�)−1AP−1 = (P′)�A(P′)� with P′ = P−1 and applies the
same arguments as above. �

The second proposition uses renormalization and transpo-
sition of the “original” transition matrix:

Proposition IV.5. Let T be a transition matrix with nonzero
determinant and consider B = DT�, where D is the diagonal
matrix Dii = (

∑
j T �

ij )−1. T is embeddable if and only if B is
also embeddable.

Proof. It is easy to see that if T is a transition matrix so
is B, since B is always normalized to have row-sums 1, and
if T has all its elements non-negative, so has B. Notice that,
while T yields the transition probabilities from a given present
state to each accessible future states, B gives the transition
probabilities to a given present state from each possible past
states. It was proven that for a fixed time t , a matrix T(t,τ )
has all its entries non-negative, Tij (t,τ ) > 0, for all τ and is
time continuous, i.e., for any ε > 0 there is one δ for which,
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if |τ1 − τ2| < δ, then ||T(t,τ1) − T(t,τ2)|| < ε if and only if
there is a valid generator associated with T(t,τ ). Since B is
the product of two matrices that are time continuous, B is also
time continuous. �

Notice that in Proposition IV.5, if the transition matrix T has
zero determinant, one falls in the trivial case with no generator;
thus, for all cases where a generator exist, T is invertible.

V. COMPUTATIONAL IMPLEMENTATION:
HOW “EMBEDDABLE” IS A MATRIX?

The mathematical conditions for the existence of a homo-
geneous generator from the embedding problem are useful
more at a theoretical than at a computational level. They give
a bivalent result that does not take into consideration either
noise generated from finite samples or how distant an empirical
process is from having a constant generator.

In this section we will describe how to adapt our mathemat-
ical results to be meaningful to empirical transition matrices
in real situations. First, in Sec. V A, we describe how we
generate 200 different “test” transition matrices from which
200 different sets of data are extracted to test the implemented
approach. In Sec. V B a metric is proposed for each proposition
above that measures how “close” the empirical transition
matrix is from satisfying the corresponding proposition.
Finally, in Sec. V C, if one arrives at the conclusion that the
transition matrix is indeed embeddable we describe how to
estimate a corresponding generator.

A. Generating data from inhomogeneous transition matrices

In general, for deriving an inhomogeneous generator, one
solves the Peano-Baker series [Eq. (16)]. Assume Q(t) can be
modeled as a polynomial of degree N , i.e.,

QN (t) =
N∑

n=0

Bnt
n, (30)

where each matrix Bn is constant over time and 0 � t < 1.
Naturally, we need to make sure that no off-diagonal entry in
Q(t) ever become negative in t ∈ [0,1[. To derive the transition
matrix T, we impose t = 1 in Eq. (30), substituting it in
Eq. (17) and afterwards in (16), yielding

Zk+1(t) =
∑

n1,...,nk

(
k∏

�=1

Bnk

� +∑�
m=1 nm

)
t k+∑�

m=1 nm, (31)

which is easily checked by induction, and thus

T =
∞∑

k=0

∑
n1,··· ,nk

k∏
l=1

Bnk

l +∑l
m=1 nm

. (32)

We will restrict our attention here to the case N = 1,
representing a simple linear trend in transition rates over time.
For generating one transition matrix, we first choose matrices
Bn in the following way: Each off-diagonal entry, Bij with
i �= j , is randomly chosen according to the positive part of a
Gaussian distribution and the diagonal entries are, afterwards,
given by Bii = −∑

j �=i Bij . From matrices Bn one then
computes the generator QN and its corresponding transition
matrix T, according to Eqs. (30) and (32), respectively. Finally,

introducing the transition matrix in Eq. (1) and considering the
initial condition �P (0) as a normalized uniform distribution
(equal probability for all states), one obtains the iterated
distribution �P (τ ) from which the data set is extracted.

Before proceeding, we make two important remarks. First,
it is necessary to describe how to estimate the transition matrix
directly from data series and then explain how to resample
the transition matrix which will be necessary for evaluating
if it is embeddable. Among several algorithms [17,18], we
concentrate ion the so-called cohort method, which counts the
number Nkj of transitions from state k to state j in the desired
time interval [t,t + τ ], defining the entries of the transition
matrices as

Tkj (t) = Nkj (t)∑
j Nkj (t)

, (33)

with the associated error

σTkj
=
√

Tkj (1 − Tkj )

Nkj

. (34)

Second, in order to implement the set of propositions
with an associated statistical error, we propose a method of
resampling a given empirical transition matrix T(t,τ ). The
set of resampling matrices obtained is then used to quantify
the error associated to the estimates on the transition matrix:
Each metric that is applied to the empirical transition matrix
retrieves a set of metric values when applied to the full set of
resampling matrices, and the standard deviation of that value
distribution is then taken as the error or uncertainty associated
to the metric estimation.

More specifically, one generates series from the distribution
of states P (X,t) at time t until the distribution P (X,t + τ )
at t + τ and estimates the corresponding resampling matrix
through the cohort method. See Eq. (33).

B. Embeddability metrics

The propositions of the embedding problem do not take
in consideration the uncertainty in the estimation of T, and
thus we need to develop methods to determine, beyond
statistical uncertainty, whether a generator exists. Notice that
embeddability determines only if the process can possibly be
modeled as a time-continuous Markov process; of course, a
positive answer does not guarantee that it actually is one.
Thus, for each proposition separately, we will use a proper
null hypothesis: In the case of Propositions IV.1 and IV.2,
the null hypothesis states that a generator exists, while for
Proposition IV.3 the null hypothesis states that such a generator
does not exist. For Propositions IV.1 and IV.2, whenever
the null hypothesis is not rejected, or, for Proposition IV.3,
whenever it is, one estimates the generator of the transition
matrix, as described in next Sec. V C.

To test all the metrics introduced above we generate a
set of 200 samples of 104 points, each one from a different
inhomogeneous transition matrix having an inhomogeneous
generator, as described above. We then compute numerically
the transition matrix from each sample and apply all three
metrics dN1, dN2, and dS1. The results, summarized in Table I,
clearly show that in above 60% of the cases the framework
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TABLE I. Test results of the inhomogeneous framework detection
for a set of 200 samples, each one with 104 points. When one of
the metrics is larger than dth ∼ 1.64, the threshold obtained for the
one-sided normal test, the null hypothesis cannot be rejected (see
text).

dN1 dN2 dS1

Metric (Prop.IV.1) (Prop. IV.2) (Prop. IV.3)

> dth 13% 1% 62.5%
< dth 87% 99% 37.5%

is able to correctly detect the inhomogeneity of an existing
generator.

To evaluate if the condition of Proposition IV.1 is fulfilled
for a given transition matrix T, we compute the following
quantity:

dN1 = −det(T)

σdet
, (35)

where σdet is the standard deviation from the sample of
the determinants calculated for each resampling matrix. If
dN1 � dth, then we assume that the determinant of T is negative
and the distribution of the resampled determinants are all
negative within a threshold number of standard deviations,
which for a one-sided normal test is given by dth = 2 − 1

e
∼

1.64. In this case we reject the null hypothesis, i.e., no
generator exists. As we can see from Table I, 62.5% of the
200 transition matrices constructed from a generator (see next
section) do not reject the null hypothesis.

Regarding the condition in Proposition IV.2, we use the
following metric:

dN2 = −�T

σ�

, (36)

where �T = ∏
i Tii − det(T) and σ� is the standard deviation

associated to the variable �T according to the expression in
Eq. (34). Again, if dN2 � dth, then no generator exists. This
necessary condition is much better than the previous one:
Almost all (99%) of the 200 transition matrices do not reject
the null hypothesis for Proposition IV.2.

Concerning the sufficient condition of the LU decomposi-
tion with non-negative elements, Proposition IV.3, we can use
the following distance:

dS1 = min{mL,mU }, (37)

with

mL = min
i,j

{
Lij

σLij

}
, (38a)

mU = min
i,j

{
Uij

σUij

}
, (38b)

where Lij and Uij represent the entries of the matrices L
and U, respectively, and σLij and σUij are their corresponding
standard deviations. The quantities σLij

and σUij
are calculated

solving the same system of equations of the LU decomposition
but using the uncertainties in the estimation of Tij with the
rules of error propagation. Since it is a sufficient condition, if

dS1 > dth, then we reject the null hypothesis, i.e., we assume,
contrary to the two necessary conditions above, that a generator
exists. From the full sample of transition matrices with
generators, only 62.5% fulfill this condition.

Applying these three metrics to one transition matrix,
if the null hypothesis cannot be rejected, we estimate a
generator matrix as described in the Sec. V C. To ascertain
if the estimated generator matrix yields a transition matrix
sufficiently close to the empirical transition matrix, we use
it to generate auxiliary transition matrices T̃. If the auxiliary
matrices are typically close to the empirical transition matrix
T, then we assume that the estimate is good. To that end,
we introduce one additional metric to assert if the matrix T
is close enough to a auxiliary matrix, T̃, originated from a
time-continuous Markov process with a generator Q(t), is to
compute the quantity,

dest = 1

R

R∑
k=1

�
(||T − T̃||F − ||T′ − T̃||F

)
, (39)

where R is the number of auxiliary matrices, �(x) is the
Heaviside function, and ||X||F = (

∑n
i=1

∑n
j=1 X2

ij )
1/2

is the
Frobenius norm of matrix X. We assume that the empirical
process, observed for the estimation T′, is not close to the
time-continuous Markov process with a transition matrix T̃ if
dest < 0.10, i.e., if less than 10% of the auxiliary matrices are
outside a confidence interval with significance value p = dest.

If the distance dest is too small, then a new matrix is
generated within the conditions of Propositions IV.4 and IV.5.
In case that the new matrices pass the tests above, these
propositions guarantee that the original matrix also passes.

C. Modeling the generator matrix Q(t)

In case the null hypothesis cannot be rejected (i.e., that
a valid generator exists), we then derive an estimate Q(t)
able to model the empirical process. Unlike the case of
the time-homogeneous embedding problem, here we need
to estimate a matrix which changes in time and therefore a
different procedure is necessary.

Basically, to estimate the inhomogeneous generator one
needs to invert Eq. (32). To invert Eq. (32), however, is very
cumbersome and computationally expensive. In this subsec-
tion, we propose an alternative for estimating inhomogeneous
generators that is accurate and easily implementable.

Our procedure is based in the assumption that the original
transition matrix is a product of a finite number of embeddable
matrices, T = T∗

1 . . . T∗
n with each T∗

i (i = 1, . . . ,n) having a
homogeneous generator.

One starts with a decomposition of the form

T = A1 . . . AnT∗
0An+1 . . . A2n, (40)

where Ai are embeddable matrices having one off-diagonal
positive term. The objective here is to find an embeddable
matrix T∗

0 from the empirical matrix T through the multi-
plication by matrices Ai . If T = eQ and Q has one negative
off-diagonal entry, Qij < 0, then we can try “correct” that
entry by multiplying T by two matrices, Al and Al+n,
such that (Al)ik > 0 and (Al+n)kj > 0 for a fixed index k.
Intuitively, if there are transitions from a state k to a state j
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and only afterwards from another state i to state k, then a
time-inhomogeneous process might correspond to a logarithm
with a negative off-diagonal entry if Qij < 0. Hence, one
derives a first estimate T∗

0 of the transition matrix T. In case
there is more than one negative off-diagonal element of Q one
proceeds similarly for each element separately.

The algorithm proceeds then as follows:
(1) Compute Q∗

0 = log T∗
0 and verify it is a valid generator.

Note that, during the algorithm, we must always use the same
branch of the complex logarithm.

(2) If the generator is not valid, i.e., it has at least one
negative off-diagonal entry (Q∗

0)ij , then one finds a suitable
integer k for which two matrices, A1 and An+1, have entries
(A1)kj > 0 and (An+1)ik > 0.

(3) One considers the new estimate T∗
1 = A1T∗

0An+1 and
computes the generator estimate Q∗

1 = log T∗
1 and verifies if it

is now a valid generator.
(4) One proceeds recursively until, for a certain recursive

step, iQ∗
i = log T∗

i has no negative off-diagonal entries.
(5) The final estimate at step i is identified as the k-factor

T∗
k in the assumed decomposition T = T∗

1 . . . T∗
n.

(6) One computes now T∗
k+1 = (T∗

1 . . . T∗
k)−1T and repeats

the procedure.
(7) The full algorithm ends when the last estimated matrix

in the decomposition is either an embeddable matrix or a
matrix sufficiently close to the identity. More specifically,
when the matrix norm of the difference between the matrix
and identity matrix is at least one order of magnitude smaller
than the matrix norm of the estimated matrix. Alternatively,
when the number of iterations exceeds a prefixed maximum
number of iterations, typically a few thousand, the algorithm
stops.

We tested 1000 matrices with principal logarithms having
only one negative off-diagonal entry and a valid generator was
found 945 times. If the number of negative entries is not too
large, then at each step of the recursive procedure above (<n2)
similar results are obtained, which indicates an accuracy of
around 90 and 95%.
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FIG. 2. Histogram of � values, Eq. (41), from a sample matrices
(see text).

To evaluate the accuracy of the estimates, we compare the
modeled transition matrix Tmod(t,τ ) with the empirical one,
Temp(t,τ ), estimated in Sec. V A. The comparison is based in
a normalized distance given by the fraction of the matrix norm
of the difference between both matrices and the matrix norm
of the difference between the modeled matrix and the identity
matrix (initial state):

� = ||Tmod(t,τ/2) − Temp(t,τ/2)||F
||Tmod(t,τ/2) − Id||F , (41)

where || · ||F is the Frobenius norm. Figure 2 shows a
histogram of computed values of the normalized distance �

in Eq. (41) for all estimates. Typically, the deviations are not
larger than 40% of the deviations from the initial state, where
no transition occur.

This procedure closes the computational framework for
uncovering Markov continuous processes from empirical data
sets.

VI. DISCUSSION AND CONCLUSIONS

We have extend some theoretical results on the inhomo-
geneous embedding problem and established a framework
which can evaluate empirical data for detecting the existence
of continuous Markov processes. Eight new propositions were
presented and demonstrated concerning the general case of
processes having a time-inhomogeneous generator. While it
was also recently proven that the problem of deriving a general
algorithm capable of solving the embedding problem for any
finite dimension n is NP-hard [19], our implemented algorithm
presents acceptable results: When applied to synthetic data
generated from pregiven generators, our framework is able to
detect at least 80% of them and, moreover, returns a good
estimate of the generator underlying the data set. Thus, our
algorithm enables one to find a time-inhomogeneous generator
of transition matrices with a real-valued logarithms.

Concerning the new proposition demonstrated above for
inhomogeneous transition matrices, there are, e.g., some
extensions of the LU decomposition theorem, Proposition IV.3,
that can be interesting for future work. Namely, the quasi LU
decomposition [20], the ULU decomposition [21] (“U” for
upper and “L” for lower), and the LULU factorization [22].

This framework is now able to be straightforwardly applied
to specific sets of data for evaluating hidden continuous
Markov processes. Indeed, since the transition matrix defines
a specific Markov chain, our framework can be taken as
a possibility for accessing continuous hidden processes in
(time-dependent) Markov chains found in many application
areas, including, for example, models for polymer growth
processes or enzyme activity.

For specific applications, our framework can be used for
three types of stochastic data sets: (i) one where only the initial
and final configuration of the system is given, (ii) one where
all possible state transitions are defined through a probability
value between the start and end of the observation period,
and (iii) the transition between the beginning of intermediate
instants until the end of the observation. In this paper we dealt
typically with type (ii) data sets, while in previous works [3,4]
we considered mainly type (iii). Type (i) is typically not well
defined and additional cautions must be taken.
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One important interdisciplinary application is, of course,
in economics and finance, when addressing rating matrices:
If ratings do indeed reflect a natural (continuous) economic
process, then the extracted rating matrices must have a proper
generator [23]. This problem was already addressed by us [3,4]
in the particular case of homogeneous transition matrices
derived by rating agencies. Further, our methodology could
be extended to other situations where correlation matrices
are taken for describing the macroscopic state of a financial
system [24]. With a proper normalization such correlation
matrices can be taken, in an algebraic sense, as transition
matrices and therefore the framework described above is
applicable. The computational code is available as open access
code under request to and agreement of the authors and
assuming the proper citation.
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APPENDIX: ADDITIONAL RESULTS ON THE
TIME-INHOMOGENEOUS EMBEDDABLE PROBLEM

Here we present additional results concerning the existence
of inhomogeneous generators. These results serve for proving
the theorems implemented above and provide theoretical
consistency to our framework. The first result is a sufficient
condition concerning a possible decomposition of transition
matrices:

Proposition A.1: If T is an n-dimensional triangular tran-
sition matrix, then it has an inhomogeneous generator, which
can be defined from a decomposition of the transition matrix as
T = eQ1 · · · eQn−1 , where Qi are time-homogeneous generators
of some elementary transition matrix.

Proof. The proof is given by induction. For n = 2, the
triangular transition matrix T can be parameterized by one
single parameter p ∈]0,1[:

T =
(

1 − p p

0 1

)
. (A1)

It is straightforward to see that T = eQ with

Q =
[

log(1 − p) − log(1 − p)

0 0

]
. (A2)

Since log(1 − p) < 0, Q is indeed a generator matrix.
We now consider an triangular transition matrix of arbitrary

dimension n and treat the rightmost column separately,
yielding

T =
(

A a

0� 1

)
, (A3)

where A is an (n − 1) × (n − 1) triangular matrix, a is a
column-vector with n − 1 non-negative entries, and 0� is a
row-vector of n − 1 zeros. Since T is a transition matrix, for
all i = 1, . . . ,n − 1 one has∑

j

Aij = 1 − ai. (A4)

Introducing a (n − 1)-dimensional triangular transition matrix
T′ with entries T ′

ij = Aij

1−ai
, one reads

T =
[

I − diag(a) a

0� 1

](
T′ 0

0� 1

)
, (A5)

where diag(a) is the (n − 1)-dimensional diagonal matrix
with entries taken from vector a. The first matrix above is
embeddable since[

I−diag(a) a

0� 1

]
= exp

[
diag(log(1 − a)) − log(1 − a)

0� 0

]

(A6)

and the second matrix can be further decomposed as

T =
[

I − diag(a) a

0� 1

]⎛⎜⎝
I − diag(b) b 0

0� 1 0

0 0 1

⎞
⎟⎠

×

⎛
⎜⎝

T′ 0 0

0 1 0

0� 0 1

⎞
⎟⎠. (A7)

Therefore, we arrive at a decomposition of the form T =
eQ′

1 · · · eQ′
n−1 for generator matrices Q′

1, . . . ,Q
′
n−1 with

Q1 =
(

diag[log(1 − a)] − log(1 − a)

0� 0

)
(A8)

and

Qk =
(

Q′
k−1 0

0� 0

)
(A9)

for k = 2, . . . ,n − 1. �
One could implement Proposition A.1 by finding a product

of n-dimensional square matrices
∏

i A(i) where each matrix
A(i) has only one off-diagonal nonzero element and if for
matrix A(k) one has A

(k)
ij �= 0, then for all other matrices A(l)

(l �= k) one has A
(l)
ij = 0. If that product has m = n(n − 1)

terms, then we can solve
∏

i A(i) = T as a linear system of
equations with n equations and n unknowns. Having this, we
define the following distance for the A factorization:

dS2 = min
k

{
min
i,j

{
Ak

ij

σ
Ak

ij

}}
, (A10)

where σAn
ij

is the dispersion associated with the entry An
ij .

If dS2 > 2, then we statistically infer that a generator exists.
Notice that it is possible to prove that the LU decomposition
is a particular case of the factorization in Eq. (A10).

One additional necessary condition that may be useful in
some cases is the following one:
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Proposition A.2. An irreducible matrix T, i.e., it cannot be
placed into block upper-triangular form by simultaneous row
or column permutations, is time-inhomogeneous embeddable
only if, for at least in one row, there is more than one nonzero
off-diagonal entry.

Proof. If T is time-inhomogeneous embeddable, then from
Proposition A.1, T can be written as a product n of embeddable
matrices P(k) = exp Q(k). Assume, without loss of generality,
that all matrices P(k) are time-homogeneous embeddable.

Since no matrix P(i) has no zeros in the diagonal entries,
from Propositions IV.1 and IV.2, the product of an irreducible
matrix by an embeddable matrix is always irreducible. No-
tice that if any of the matrices P(k) is time-homogeneous
embeddable, then from Proposition II.2(c), T will have no
zero entries.

Let us consider P(k) such that the product P(1) . . . P(k) is
irreducible but P(1) . . . P(k−1) is not. Since we assume, without
loss of generality that P(k) is not the identity matrix, P

(k)
ij > 0

for at least one j �= i. Then, for m � k, there is one l for which
P

(m)
li > 0. Thus Tij > 0 and Tlj > 0. �

Proposition A.2 is not a condition we can evaluate for
empirical systems. Nonetheless, it might be useful if one
has some a priori knowledge about the dynamics of the
system.

Another sufficient condition for time-inhomogeneous gen-
erators concerns situations when the matrices have non-
negative entries:

Proposition A.3. Totally non-negative transition matrices,
i.e., matrices T(t) for which all submatrices have positive
determinant, have an inhomogeneous generator Q(t).

Proof. It was proved [25] that the LU factorization of any
totally non-negative matrix is composed of a totally non-
negative lower diagonal matrix L and a totally non-negative
upper diagonal U. If a matrix is totally non-negative, then it
has only non-negative elements; thus in particular L and U are
matrices with non-negative elements. �
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